Projective-Planar Graphs with no K3, 4-Minor. II
نویسندگان
چکیده
The authors previously published an iterative process to generate a class of projectiveplanarK3,4-free graphs called ‘patch graphs’. They also showed that any simple, almost 4-connected, nonplanar, and projective-planar graph that is K3,4-free is a subgraph of a patch graph. In this paper, we describe a simpler and more natural class of cubic K3,4free projective-planar graphs which we call Möbius hyperladders. Furthermore, every simple, almost 4-connected, nonplanar, and projective-planar graph that is K3,4-free is a minor of a Möbius hyperladder. As applications of these structures we determine the page number of patch graphs and of Möbius hyperladders.
منابع مشابه
Projective-Planar Graphs with No K3, 4-Minor
There are several graphs H for which the precise structure of graphs that do not contain a minor isomorphic to H is known. In particular, such structure theorems are known for K5 [13], V8 [8] and [7], the cube [3], the octahedron [4], and several others. Such characterizations can often be very useful, e.g., Hadwiger’s conjecture for k = 4 is verified by using the structure for K5-free graphs, ...
متن کاملThe circumference of a graph with no K3, t-minor
The class of graphs with no K3,t-minors, t ≥ 3, contains all planar graphs and plays an important role in graph minor theory. In 1992, Seymour and Thomas conjectured the existence of a function α(t) > 0 and a constant β > 0, such that every 3-connected n-vertex graph with no K3,t-minors, t ≥ 3, contains a cycle of length at least α(t)n . The purpose of this paper is to confirm this conjecture w...
متن کاملK6-Minors in Triangulations on the Nonorientable Surface of Genus 3
It is easy to characterize graphs with no Kk-minors for any integer k ≤ 4, as follows. For k = 1, 2, the problem must be trivial, and for k = 3, 4, those graphs are forests and series-parallel graphs (i.e., graphs obtained from K3 by a sequence of replacing a vertex of degree 2 with a pair of parallel edges, or its inverse operation.) Moreover, Wagner formulated a fundamental characterization o...
متن کاملEvery longest circuit of a 3-connected, K3, 3-minor free graph has a chord
Carsten Thomassen conjectured that every longest circuit in a 3-connected graph has a chord. We prove the conjecture for graphs having no K3,3 minor, and consequently for planar graphs. Carsten Thomassen made the following conjecture [1, 7]: Conjecture 1 (Thomassen) Every longest circuit of a 3-connected graph has a chord. That conjecture has been proved for planar graphs with minimum degree at...
متن کامل$n$-Array Jacobson graphs
We generalize the notion of Jacobson graphs into $n$-array columns called $n$-array Jacobson graphs and determine their connectivities and diameters. Also, we will study forbidden structures of these graphs and determine when an $n$-array Jacobson graph is planar, outer planar, projective, perfect or domination perfect.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Graph Theory
دوره 86 شماره
صفحات -
تاریخ انتشار 2017